Title of dissertation : SPIN - ORBIT - COUPLED QUANTUM GASES
نویسندگان
چکیده
Title of dissertation: SPIN-ORBIT-COUPLED QUANTUM GASES Juraj Radić, Doctor of Philosophy, 2015 Dissertation directed by: Professor Victor Galitski Department of Physics The dissertation explores the effects of synthetic spin-orbit coupling on the behaviour of quantum gases in several different contexts. We first study realistic methods to create vortices in spin-orbit-coupled (SOC) Bose-Einstein condensates (BEC). We propose two different methods to induce thermodynamically stable static vortex configurations: (1) to rotate both the Raman lasers and the anisotropic trap; and (2) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. We solve the Gross-Pitaevskii equation for several experimentally relevant regimes and find new interesting effects such as spatial separation of leftand right-moving spin-orbit-coupled condensates, and the appearance of unusual vortex arrangements. Next we consider cold atoms in an optical lattice with synthetic SOC in the Mott-insulator regime. We calculate the parameters of the corresponding tightbinding model and derive the low-energy spin Hamiltonian which is a combination of Heisenberg model, quantum compass model and Dzyaloshinskii-Moriya interaction. We find that the Hamiltonian supports a rich classical phase diagram with collinear, spiral and vortex phases. Next we study the time evolution of the magnetization in a Rashba spinorbit-coupled Fermi gas, starting from a fully-polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting non-linear system of equations gives rise to three distinct dynamical regimes controlled by the ratio of interaction and spin-orbit-coupling strength λ: for small λ, the magnetization decays to zero. For intermediate λ, it displays undamped oscillations about zero and for large λ, a partially magnetized state is dynamically stabilized. Motivated by an interesting stripe phase which appears in BEC with SOC [Li et al., Phys. Rev. Lett. 108, 225301 (2011)], we study the finite-temperature phase diagram of a pseudospin-1/2 Bose gas with contact interactions. We show that strong inter-spin interactions can lead to the appearance of magnetically ordered phases at temperatures above the superfluid transition. For the case of inter-spin attraction, we also discuss the possibility of a bosonic analogue of the Cooper-paired phase, however this state is not energetically favourable. We extend our calculations to a spin-orbit-coupled Bose gas to investigate the possibility of stripe ordering in the normal phase. However, within our approximations, we do not find an instability towards stripe formation. Finally, we consider a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion in one spatial direction. This Hamiltonian can be realized using the NIST scheme of spin-orbit coupling [Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature 471, 83 (2011)], or using the shaken lattice scheme of Parker et al. [C. V. Parker, L.-C. Ha and C. Chin, Nature Physics 9, 769 (2013)]. By numerically comparing energies of various trial wave-functions, we show that, at low densities, the ground state is strongly correlated, in contrast to a typical mean-field BEC. The trial wave-function with the lowest energy is of Jastrow-type and it describes a state with finite, but strongly reduced, condensate fraction. SPIN-ORBIT-COUPLED QUANTUM GASES
منابع مشابه
Long-Lived Spin-Orbit-Coupled Degenerate Dipolar Fermi Gas
We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states composed of optically coupled components of an atomic spin. Because of dysprosium’s large electronic orbital angular momentum and ...
متن کاملQuantum quasicrystals of spin-orbit-coupled dipolar bosons.
We study quasi-two-dimensional dipolar Bose gases in which the bosons experience a Rashba spin-orbit coupling. We show that the degenerate dispersion minimum due to the spin-orbit coupling, combined with the long-range dipolar interaction, can stabilize a number of quantum crystalline and quasicrystalline ground states. Coupling the bosons to a fermionic species can further stabilize these phas...
متن کاملMagnetic phases of spin-1 spin-orbit-coupled Bose gases.
Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit l...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملBCS-BEC crossover in spin-orbit-coupled two-dimensional Fermi gases
Gang Chen,1,2,3 Ming Gong,1 and Chuanwei Zhang1,* 1Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164 USA 2Department of Physics, Shaoxing University, Shaoxing 312000, People’s Republic of China 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, People’s Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015